Sunday, May 14, 2017

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 28

Determine the derivative of the function y=cosπxsinπx+cosπx



y=ddx(cosπxsinπx+cosπx)y=[(sinπx+cosπx)ddx(cosπx)][(cosπx)ddx(sinπx+cosπx)](sinπx+cosπx)2y=[(sinπx+cosπx)(sinπx)ddx(πx)][(cosπx)(cosπx)ddx(πx)+(sinπx)ddx(πx)](sinπx+cosπx)2y=(sinπx+cosπx)(sinπx)(π)(cosπx)[(cosπx)(π)+(sinπx)(π)](sinπx+cosπx)2y=(sinπx+cosπx)(sinπx)(π)(cosπx)(π)(cosπxsinπx)(sinπx+cosπx)2y=π(sin2πx\cancelcosπxsinπxcos2πx+\cancelcosπxsinπx)(sinπx+cosπx)2y=π(sin2πxcos2πx)(sinπx+cosπx)2y=π(sin2πx+cos2πx)(sinπx+cosπx)2(Pythagorean Identity (sin2+cos2x=1))y=π(1)(sinπx+cosπx)2y=π(sinπx+cosπx)2

No comments:

Post a Comment