Determine limx→1(1x−1+1x2−3x+2)
limx→1(1x−1+1x2−3x+2)=limx→1[1x−1+1(x−1)(x−2)]Factor the denominator=limx→1[x−2+1(x−1)(x−2)]=limx→1[x−1(x−1)(x−2)]Get the LCD and combine like terms=limx→1\cancelx−1\cancel(x−1)(x−2)=limx→11x−2Cancel out like terms=11−2=1−1Substitute value of x=−1
No comments:
Post a Comment