Differentiate f(x)=(2xx2+1)3.
f′(x)=3(2xx2+1)2⋅ddx(2xx2+1)f′(x)=3(2xx2+1)2[(x2+1)⋅ddx(2x)−2x⋅ddx(x2+1)(x2+1)2]f′(x)=3(2xx2+1)2[(x2+1)(2)−2x(2x)(x2+1)2]f′(x)=3(2xx2+1)2[2x2+2−4x2(x2+1)2]f′(x)=3(2xx2+1)2[2−2x2(x2+1)2]f′(x)=3(2x)2(2−2x2)(x2+1)2(x2+1)2f′(x)=12x2(2−2x2)(x2+1)4
No comments:
Post a Comment