Evaluate $\displaystyle \int t \sin h mt dt$
If we let $u = t$ and $dv =\sin h (mt) dt$, then...
$du = dt$ and $\displaystyle v = \int \sin h (mt) dt = \frac{1}{m} \cos h (mt)$
So,
$
\begin{equation}
\begin{aligned}
\int t \sin h mt dt &= uv - \int v du = \frac{t \cos h (mt)}{m} - \int \frac{\cos h(mt) dt}{m}\\
\\
&= \frac{t \cos h (mt)}{m} - \frac{1}{m} \int \cos h (mt) dt\\
\\
&= \frac{t \cos h (mt)}{m} - \frac{1}{m} \left( \sin h (mt) \left( \frac{1}{m} \right) + c\right)\\
\\
&= \frac{t \cos h (mt)}{m} - \frac{\sin h (mt)}{m^2} + c
\end{aligned}
\end{equation}
$
Wednesday, April 5, 2017
Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 16
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
No comments:
Post a Comment