Find the derivative of y=(x3+1)4sin2x3√x by using logarithmic differentiation.
By taking logarithms of both sides..
lny=ln[(x3+1)4sin2x3√x]
If we apply the Laws of logarithm, we have
lny=ln(x3+1)4+lnsin2x−133√xrecall that ln(xy)=lnx+lny and ln(xy)=lnx−lnylny=4ln(x3+1)+2lnsinx−13lnxrecall that ln(x)k=klnx
By taking the derivative implicitly, we have..
ddx(y)y=4(ddx(x3+1)x3+1)+2(ddx(sinx)sinx)−13(ddx(x)x)dydxy=4(3x2x3+1)+2cosxsinx−13(1x)dydxy=12x2x3+1+2cotx−13xdydx=y[12x2x3+1+2cotx−13x]dydx=[(x3+1)4sin2x3√x][12x2x3+1+2cotx−13x]
No comments:
Post a Comment