Friday, April 28, 2017

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 60

Find the derivative of y=(x3+1)4sin2x3x by using logarithmic differentiation.

By taking logarithms of both sides..

lny=ln[(x3+1)4sin2x3x]

If we apply the Laws of logarithm, we have


lny=ln(x3+1)4+lnsin2x133xrecall that ln(xy)=lnx+lny and ln(xy)=lnxlnylny=4ln(x3+1)+2lnsinx13lnxrecall that ln(x)k=klnx


By taking the derivative implicitly, we have..


ddx(y)y=4(ddx(x3+1)x3+1)+2(ddx(sinx)sinx)13(ddx(x)x)dydxy=4(3x2x3+1)+2cosxsinx13(1x)dydxy=12x2x3+1+2cotx13xdydx=y[12x2x3+1+2cotx13x]dydx=[(x3+1)4sin2x3x][12x2x3+1+2cotx13x]

No comments:

Post a Comment