Monday, April 24, 2017

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 34

Determine the critical numbers of the function g(t)=|3t4|

We can rewrite the given function as


g(t)=(3t4)2g(t)=ddt((3t4)2)g(t)=ddt[(3t4)2]12g(t)=12[(3t4)2]12ddt(3t4)2g(t)=(1\cancel2)[(3t4)2]12(\cancel2)(3t4)ddt(3t4)g(t)=[(3t4)2]12(3t4)(3)g(t)=3(3t4)[(3t4)2]12


Solving for critical numbers


g(t)=00=3(3t4)[(3t4)2]12(3t4)2[0=3(3t4)\cancel(3t4)2]\cancel(3t4)20=3(3t4) or \cancel3(3t4)\cancel3=033t4=03t=4\cancel3t\cancel3=43t=43



Therefore, the critical number is t=43.

No comments:

Post a Comment