Determine the critical numbers of the function g(t)=|3t−4|
We can rewrite the given function as
g(t)=√(3t−4)2g′(t)=ddt(√(3t−4)2)g′(t)=ddt[(3t−4)2]12g′(t)=12[(3t−4)2]−12ddt(3t−4)2g′(t)=(1\cancel2)[(3t−4)2]−12(\cancel2)(3t−4)ddt(3t−4)g′(t)=[(3t−4)2]−12(3t−4)(3)g′(t)=3(3t−4)[(3t−4)2]12
Solving for critical numbers
g′(t)=00=3(3t−4)[(3t−4)2]−12√(3t−4)2[0=3(3t−4)\cancel√(3t−4)2]\cancel√(3t−4)20=3(3t−4) or \cancel3(3t−4)\cancel3=033t−4=03t=4\cancel3t\cancel3=43t=43
Therefore, the critical number is t=43.
No comments:
Post a Comment