Differentiate h(x)=(1−3x2−7x)−5.
h(x)=(2−7x1−3x)5Laws of Exponenth′(x)=5(2−7x1−3x)4⋅ddx(2−7x1−3x)h′(x)=5(2−7x1−3x)4[(1−3x)⋅ddx(2−7x)−(2−7x)⋅ddx(1−3x)(1−3x)2]h′(x)=5(2−7x1−3x)4[(1−3x)(−7)−(2−7x)(−3)(1−3x)2]h′(x)=5(2−7x1−3x)4[−7+21x+6−21x(1−3x)2]h′(x)=5(2−7x1−3x)4[−1(1−3x)2]h′(x)=−5(2−7x)4(1−3x)6
No comments:
Post a Comment