Find the indefinite integral ∫sin3xcos4xdx. Illustrate by graphing both the integrand and its antiderivative (taking c=0).
∫sin3xcos4xdx=∫sin2xsinxcos4xdxApply Trigonometric Identity sin2x+cos2x=1 for sin2x∫sin3xcos4xdx=∫(1−cos2x)sinxcos4xdx∫sin3xcos4xdx=∫(cos4x−cos6x)sinxdx
Let u=cosx, then du=−sinxdx, so sinxdx=−du. Thus,
∫(cos4x−cos6x)sinxdx=∫(u4−u6)−du∫(cos4x−cos6x)sinxdx=∫−(u4−u6)du∫(cos4x−cos6x)sinxdx=∫(u6−u4)du∫(cos4x−cos6x)sinxdx=u6+16+1−u4+14+1+c∫(cos4x−cos6x)sinxdx=u77−u55+c∫(cos4x−cos6x)sinxdx=(cosx)77−(cosx)55+c∫(cos4x−cos6x)sinxdx=cos7x7−cos5x5+c
No comments:
Post a Comment