Monday, March 20, 2017

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 52

Find the indefinite integral sin3xcos4xdx. Illustrate by graphing both the integrand and its antiderivative (taking c=0).

sin3xcos4xdx=sin2xsinxcos4xdxApply Trigonometric Identity sin2x+cos2x=1 for sin2xsin3xcos4xdx=(1cos2x)sinxcos4xdxsin3xcos4xdx=(cos4xcos6x)sinxdx

Let u=cosx, then du=sinxdx, so sinxdx=du. Thus,

(cos4xcos6x)sinxdx=(u4u6)du(cos4xcos6x)sinxdx=(u4u6)du(cos4xcos6x)sinxdx=(u6u4)du(cos4xcos6x)sinxdx=u6+16+1u4+14+1+c(cos4xcos6x)sinxdx=u77u55+c(cos4xcos6x)sinxdx=(cosx)77(cosx)55+c(cos4xcos6x)sinxdx=cos7x7cos5x5+c

No comments:

Post a Comment