Express the vlaue of ∫π/40tan8xsecxdx in terms of I. Suppose that I=∫π/40tan6xsecxdx.
By using integration by parts,
If we let u=tan7x and dv=tanxsecxdx, then
du=7tan6xsec2xdx and v=∫tanxsecxdx=secx
So,
∫π/40tan8xsecxdx=∫π/40tan7⋅tanx⋅secxdx=uv−∫vdu=tan7xsecx−∫sec(7tan6xsec2xdx)=tan7xsecx−∫7tan6xsec2xsecxdx
Recall that sec2x=1+tan2x
∫π/40tan8xsecxdx=tan6xsecx−∫7tan6x(1+tan2x)secxdx=tan6secx−7∫tan6xsecxdx−7∫tan8xsecxdx
By combining like terms
∫tan8xsecxdx+7∫tan8xsecxdx=tan7xsecx−7∫tan6xsecxdx8∫tan8xsecxdx=tan7xsecx−7∫tan6xsecxdx∫tan8xsecxdx=tan7xsecx−7∫tan6xsecxdx8
Evaluating from 0 to π4,
=[tan7xsecx8]π/40−78∫π/40tan6xsecxdx
but, I=∫π/40tan6xsecxdx, so
∫π/40tan8xsecxdx=[tan7(π4)sec(π4)8]−[tan7(0)sec(0)8]−78I∫π/40tan8xsecxdx=√28−78I=18(√2−7I)
No comments:
Post a Comment