Saturday, March 11, 2017

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 50

Express the vlaue of π/40tan8xsecxdx in terms of I. Suppose that I=π/40tan6xsecxdx.
By using integration by parts,
If we let u=tan7x and dv=tanxsecxdx, then
du=7tan6xsec2xdx and v=tanxsecxdx=secx

So,

π/40tan8xsecxdx=π/40tan7tanxsecxdx=uvvdu=tan7xsecxsec(7tan6xsec2xdx)=tan7xsecx7tan6xsec2xsecxdx


Recall that sec2x=1+tan2x

π/40tan8xsecxdx=tan6xsecx7tan6x(1+tan2x)secxdx=tan6secx7tan6xsecxdx7tan8xsecxdx


By combining like terms

tan8xsecxdx+7tan8xsecxdx=tan7xsecx7tan6xsecxdx8tan8xsecxdx=tan7xsecx7tan6xsecxdxtan8xsecxdx=tan7xsecx7tan6xsecxdx8


Evaluating from 0 to π4,
=[tan7xsecx8]π/4078π/40tan6xsecxdx

but, I=π/40tan6xsecxdx, so

π/40tan8xsecxdx=[tan7(π4)sec(π4)8][tan7(0)sec(0)8]78Iπ/40tan8xsecxdx=2878I=18(27I)

No comments:

Post a Comment