Friday, March 31, 2017

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 64

Determine the limx(2x32x+5)2x+1. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.
If we let y=(2x32x+5)2x+1, then

lny=(2x+1)ln(2x32x+5)
So,

limxlny=limx[(2x+1)ln(2x32x+5)]
But, we can rewrite the limit as...

limx[(2x+1)ln(2x32x+5)]=limxln(2x32x+5)12x+1
Also, we can use the Laws of Logarithm to simplify it further
limxln(2x32x+5)12x+1=limxln(2x3)ln(2x+5)(2x+1)1

Now, by applying L'Hospital's Rule...


limxln(2x3)ln(2x+5(2x+1)1=limx22x322x+51(2x+1)2(2)=limx2(2x+5)2(2x3)(2x3)(2x+5)2(2x+1)2=limx2[(2x+5)(2x3)](2x+1)22(2x3)(2x+5)=limx8(2x+1)2(2x3)(2x+5)=limx8(2x+1)24x2+4x15


If we evaluate the limit, we will still get an indeterminate form, so we must use L'Hospital's Rule once more. Then,

limx8(2x+1)24x2+4x15=limx8[2(2x+1)(2)]8x+4=limx32(2x+1)4(2x+1)=limx324=8


Hence,
limxlny=limx[(2x+1)ln(2x32x+5)]=8
Therefore, we have...
limx=(2x32x+5)2x+1=limxelny=e8

No comments:

Post a Comment