Determine the limx→∞(2x−32x+5)2x+1. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.
If we let y=(2x−32x+5)2x+1, then
lny=(2x+1)ln(2x−32x+5)
So,
limx→∞lny=limx→∞[(2x+1)ln(2x−32x+5)]
But, we can rewrite the limit as...
limx→∞[(2x+1)ln(2x−32x+5)]=limx→∞ln(2x−32x+5)12x+1
Also, we can use the Laws of Logarithm to simplify it further
limx→∞ln(2x−32x+5)12x+1=limx→∞ln(2x−3)−ln(2x+5)(2x+1)−1
Now, by applying L'Hospital's Rule...
limx→∞ln(2x−3)−ln(2x+5(2x+1)−1=limx→∞22x−3−22x+5−1(2x+1)−2(2)=limx→∞2(2x+5)−2(2x−3)(2x−3)(2x+5)−2(2x+1)2=limx→∞−2[(2x+5)−(2x−3)](2x+1)22(2x−3)(2x+5)=limx→∞−8(2x+1)2(2x−3)(2x+5)=−limx→∞8(2x+1)24x2+4x−15
If we evaluate the limit, we will still get an indeterminate form, so we must use L'Hospital's Rule once more. Then,
−limx→∞8(2x+1)24x2+4x−15=−limx→∞8[2(2x+1)(2)]8x+4=−limx→∞32(2x+1)4(2x+1)=−limx→∞324=−8
Hence,
limx→∞lny=limx→∞[(2x+1)ln(2x−32x+5)]=−8
Therefore, we have...
limx→∞=(2x−32x+5)2x+1=limx→∞elny=e−8
No comments:
Post a Comment