Determine the function y=ln(x4sin2x)
y′=ddxln(x4sin2x)y′=1x4sin2x⋅ddx(x4sin2x)y′=1x4sin2x[x4ddx(sinx)2+sin2xddx(x4)]y′=1x4sin2x[x4⋅2sinxddx(sinx)+sin2x⋅4x3]y′=1x4sin2x(2x4sinxcosx+4x3sin2x)y′=x3sinx(2xcosx+4sinx)x4sin2xy′=2\cancelxcosx\cancelxsinx+4\cancelsinxx\cancelsinxy′=2cotx+4x
No comments:
Post a Comment