Friday, March 24, 2017

Single Variable Calculus, Chapter 7, 7.4-1, Section 7.4-1, Problem 16

Determine the function y=ln(x4sin2x)

y=ddxln(x4sin2x)y=1x4sin2xddx(x4sin2x)y=1x4sin2x[x4ddx(sinx)2+sin2xddx(x4)]y=1x4sin2x[x42sinxddx(sinx)+sin2x4x3]y=1x4sin2x(2x4sinxcosx+4x3sin2x)y=x3sinx(2xcosx+4sinx)x4sin2xy=2\cancelxcosx\cancelxsinx+4\cancelsinxx\cancelsinxy=2cotx+4x

No comments:

Post a Comment