Thursday, March 16, 2017

Single Variable Calculus, Chapter 7, 7.4-1, Section 7.4-1, Problem 32

Differentiate f(x)=11+lnx and find the domain of f
The denominator of the given function should be greater than zero. So,

1+lnx>0lnx>1elnx>e1x>e1x>1e

Therefore, the domain is [0,1e)(1e,)
Solving for f

f(x)=ddx(11+lnx)f(x)=(1+lnx)ddx(1)(1)ddx(1+lnx)(1+lnx)2f(x)=1x(1+lnx)2f(x)=1x(1+lnx)2

No comments:

Post a Comment