Differentiate f(x)=11+lnx and find the domain of f
The denominator of the given function should be greater than zero. So,
1+lnx>0lnx>−1elnx>e−1x>e−1x>1e
Therefore, the domain is [0,1e)⋃(1e,∞)
Solving for f′
f′(x)=ddx(11+lnx)f′(x)=(1+lnx)ddx(1)−(1)ddx(1+lnx)(1+lnx)2f′(x)=−1x(1+lnx)2f′(x)=−1x(1+lnx)2
No comments:
Post a Comment