Differentiate $f(x) = \ln (x^2 - 2x)$ and find the domain of $f$.
$
\begin{equation}
\begin{aligned}
\text{if } f(x) =& \ln (x^2 - 2x), \text{ then}
\\
\\
f'(x) =& \frac{\displaystyle \frac{d}{dx} (x^2 - 2x) }{x^2 -2x}
\\
\\
f'(x) =& \frac{2x - 2}{x^2 - 2x}
\end{aligned}
\end{equation}
$
We know that $f(x)$ is a natural logarithmic function that is defined for $x^2 - 2x > 0$
$
\begin{equation}
\begin{aligned}
& x( x - 2) > 0 \to (x > 0) \bigcap (x - 2 > 0)
\\
\\
& \text{Since } (x > 0) \bigcap (x - 2 > 0)
\\
\\
& \text{We have,}
\\
\\
& x < 0 \text{ and } x > 2
\end{aligned}
\end{equation}
$
Therefore, the domain of $f$ is
$(- \infty, 0) \bigcup (2, \infty)$
No comments:
Post a Comment