Friday, March 10, 2017

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 7

Determine the equation of the tangent line to the curve y=x at the point (1,1)

Using the definition (Slope of the tangent line)

m=limxaf(x)f(a)xa

We have a=1 and f(x)=x, so the slope is


m=limx1f(x)f(1)x1m=limx1x1x1 Substitute value of a and xm=limx1x1x1x+1x+1 Multiply both numerator and denominator by (x+1)m=limx1\cancelx1\cancel(x1)(x+1) Cancel out like terms m=limx11x+1=11+1 Evaluate the limitm=12 Slope of the tangent line


Using point slope form


yy1=m(xx1)y1=12(x1) Substitute value of x,y and my=x12+1 Get the LCDy=x1+22 Combine like termsy=x+12


Therefore,
The equation of the tangent line at (1,1) is y=x+12

No comments:

Post a Comment