Find the intergral ∫x+2√x2+4xdx, if it exists.
If we let u=x2+4x, then du=(2x+4)dx, so (x+2)dx=du2. Thus,
∫x+2√x2+4xdx=∫1√x2+4xx+2dx∫x+2√x2+4xdx=∫1√udu2∫x+2√x2+4xdx=12∫u−12du∫x+2√x2+4xdx=12⋅u−12+1−12+1+C∫x+2√x2+4xdx=12⋅u1212+C∫x+2√x2+4xdx=1\cancel2⋅\cancel2u12+C∫x+2√x2+4xdx=u12+C∫x+2√x2+4xdx=(x2+4x)12+Cor∫x+2√x2+4xdx=√x2+4x+C
No comments:
Post a Comment