Wednesday, January 18, 2017

Single Variable Calculus, Chapter 5, Review Exercises, Section Review Exercises, Problem 22

Find the intergral x+2x2+4xdx, if it exists.
If we let u=x2+4x, then du=(2x+4)dx, so (x+2)dx=du2. Thus,

x+2x2+4xdx=1x2+4xx+2dxx+2x2+4xdx=1udu2x+2x2+4xdx=12u12dux+2x2+4xdx=12u12+112+1+Cx+2x2+4xdx=12u1212+Cx+2x2+4xdx=1\cancel2\cancel2u12+Cx+2x2+4xdx=u12+Cx+2x2+4xdx=(x2+4x)12+Corx+2x2+4xdx=x2+4x+C

No comments:

Post a Comment