Find y′ of 3x−2√2x+1
y′=ddx(3x−2√2x+1)y′=(√2x+1)ddx(3x−2)−(3x−2)ddx(√2x+1)(√2x+1)2y′=(2x+1)12[3ddx(x)−ddx(2)]−(3x−2)ddx(2x+1)12[(2x+1)12]2y′=(2x+1)12(3−0)−(3x−2)(12)(2x+1)−12ddx(2x+1)2x+1y′=(2x+1)12(3)−(3x−2)(1\cancel2)(2x+1)−12(\cancel2)2x+1y′=(2x+1)12(3)−(3x−2)(2x+1)122x+1y′=(2x+1)(3)−(3x−2)(2x+1)122x+1y′=6x+3−3x+2(2x+1)(2x+1)12y′=3x+5(2x+1)3/2
No comments:
Post a Comment