Determine the derivative of the function y=cos√sin(tanπx)
y′=ddx(cos√sin(tanπx))y′=−sin√sin(tanπx)⋅ddx(√sin(tanπx))y′=−sin√sin(tanπx)⋅ddx[sin(tanπx)]12y′=−sin√sin(tanπx)⋅12[sin(tanπx)]−12ddx[sin(tanπx)]y′=−sin√sin(tanπx)⋅12[sin(tanπx)]−12[cos(tanπx)]ddx(tanπx)y′=−sin√sin(tanπx)⋅12[sin(tanπx)]−12[cos(tanπx)][sec2(πx)]ddx(πx)y′=−sin√sin(tanπx)⋅12[sin(tanπx)]−12[cos(tanπx)][sec2(πx)](π)y′=−πcos(tanπx)sec2(πx)sin√sin(tanπx)2[sin(tanπx)]12y′=−πcos(tanπx)sec2(πx)sin√sin(tanπx)2√sin(tanπx)
No comments:
Post a Comment