Sunday, January 15, 2017

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 45

Determine the derivative of the function y=cossin(tanπx)


y=ddx(cossin(tanπx))y=sinsin(tanπx)ddx(sin(tanπx))y=sinsin(tanπx)ddx[sin(tanπx)]12y=sinsin(tanπx)12[sin(tanπx)]12ddx[sin(tanπx)]y=sinsin(tanπx)12[sin(tanπx)]12[cos(tanπx)]ddx(tanπx)y=sinsin(tanπx)12[sin(tanπx)]12[cos(tanπx)][sec2(πx)]ddx(πx)y=sinsin(tanπx)12[sin(tanπx)]12[cos(tanπx)][sec2(πx)](π)y=πcos(tanπx)sec2(πx)sinsin(tanπx)2[sin(tanπx)]12y=πcos(tanπx)sec2(πx)sinsin(tanπx)2sin(tanπx)

No comments:

Post a Comment