Evaluate the equation $\displaystyle \left| \frac{2}{3}x - 2 \right| = \left| \frac{1}{3}x + 3 \right|$.
This equation is satisfied either if $\displaystyle \frac{2}{3}x - 2$ and $\displaystyle \frac{1}{3}x + 3$ are equal to each other or if $\displaystyle \frac{2}{3}x - 2$ and $\displaystyle \frac{1}{3}x + 3$ are negatives of each other
$
\begin{equation}
\begin{aligned}
\frac{2}{3}x - 2 =& \frac{1}{3}x + 3 && \text{or} &&& \frac{2}{3}x - 2 =& - \left( \frac{1}{3}x + 3 \right)
\\
\\
\frac{2}{3}x - \frac{1}{3}x =& 2 + 3 && \text{or} &&& \frac{2}{3}x + \frac{1}{3}x =& - 3 + 2
\\
\\
\frac{1}{3}x =& 5 && \text{or} &&& x =& -1
\\
\\
x =& 15
\end{aligned}
\end{equation}
$
The solution set is $\{ -1,15 \}$.
No comments:
Post a Comment