Find the area of the region bounded by the curves y=sin3x and y=cos3x from π4≤x≤5π4
By using vertical strips,
A=∫ba(yupper−ylower)dxA=∫5π/4π/4(sin3x−cos3x)dxA=∫5π/4π/4sin3xdx−∫5π/4π/4cos3xdx
For the first term,
∫sin3xdx=∫sinx⋅sin2xdx, recall that sin2x=1−cos2x=∫sinx(1−cos2x)dx=∫(sinx−sinxcos2x)dx=∫sinxdx−∫sinxcos2xdx=−cosx−∫cos2xdx
To evaluate ∫sinxcos2xdx, we let u=cosx, then so
du=−sinxdx
Thus,
∫sinxcos2xdx=∫u2(−du)=−∫u2du=−u33=−cos3x3
Hence,
∫sin3xdx=−cosx+cos3x3
For the term ∫cos3xdx
∫cos3x=∫cosx⋅cos3xdx, recall that cos2x=1−sin2x=∫cosx(1−sin2x)dx=∫cosxdx−∫cosxsin2xdx=sinx−∫cosxsin2xdx
To evaluate the right term, we let u=sinx, so du=cosxdx
∫cosxsin2xdx=∫u2du=u33=sin3x3
Hence,
∫cos3xdx=sinx−sin3x3
Therefore, from the previous equation
A=∫sin3xdx−∫cos3xdxA=−cosx+cos3x3−[sinx−sin3x3]A=13(sin3x+cos3x)−sinx−cosx
Evaluating x=π4 to x=5π4
A=13[(−√22)3+(−√22)3]−(−√22)3−(−√22)3−[13[(√22)3+(√22)3]−(√22)3−(√22)3]A=5√23 square units
No comments:
Post a Comment