Wednesday, December 21, 2016

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 58

Find the area of the region bounded by the curves y=sin3x and y=cos3x from π4x5π4



By using vertical strips,

A=ba(yupperylower)dxA=5π/4π/4(sin3xcos3x)dxA=5π/4π/4sin3xdx5π/4π/4cos3xdx


For the first term,

sin3xdx=sinxsin2xdx, recall that sin2x=1cos2x=sinx(1cos2x)dx=(sinxsinxcos2x)dx=sinxdxsinxcos2xdx=cosxcos2xdx


To evaluate sinxcos2xdx, we let u=cosx, then so
du=sinxdx

Thus,

sinxcos2xdx=u2(du)=u2du=u33=cos3x3


Hence,
sin3xdx=cosx+cos3x3

For the term cos3xdx

cos3x=cosxcos3xdx, recall that cos2x=1sin2x=cosx(1sin2x)dx=cosxdxcosxsin2xdx=sinxcosxsin2xdx


To evaluate the right term, we let u=sinx, so du=cosxdx
cosxsin2xdx=u2du=u33=sin3x3
Hence,
cos3xdx=sinxsin3x3

Therefore, from the previous equation

A=sin3xdxcos3xdxA=cosx+cos3x3[sinxsin3x3]A=13(sin3x+cos3x)sinxcosx



Evaluating x=π4 to x=5π4


A=13[(22)3+(22)3](22)3(22)3[13[(22)3+(22)3](22)3(22)3]A=523 square units

No comments:

Post a Comment