Monday, December 26, 2016

Single Variable Calculus, Chapter 5, Review Exercises, Section Review Exercises, Problem 18

Find the intergral 10sin(3πt)dt, if it exists.
If we let u=3πt, then du=3πdt, so dt=du3π. When t=0, u=0 and when t=1, u=3π. Therefore

10sin(3πt)dt=10sinudu3π10sin(3πt)dt=13π10sinudu10sin(3πt)dt=cosu|1010sin(3πt)dt=13π[cos(3π)+cos(0)]10sin(3πt)dt=13π(2)10sin(3πt)dt=23π

No comments:

Post a Comment