Find the intergral ∫10sin(3πt)dt, if it exists.
If we let u=3πt, then du=3πdt, so dt=du3π. When t=0, u=0 and when t=1, u=3π. Therefore
∫10sin(3πt)dt=∫10sinudu3π∫10sin(3πt)dt=13π∫10sinudu∫10sin(3πt)dt=⋅−cosu|10∫10sin(3πt)dt=13π[−cos(3π)+cos(0)]∫10sin(3πt)dt=13π(2)∫10sin(3πt)dt=23π
No comments:
Post a Comment