Determine an appropriate viewing rectangle for the equation $y = \sqrt{12x-17}$ and use it to draw the graph.
We can determine the appropriate viewing rectangle easier by getting the $x$ and $y$-intercept at the equation. So, if we set $y=0$
$
\begin{equation}
\begin{aligned}
0 &= \sqrt{12x-17}\\
\\
0 &= 12x - 7 && \text{Square both sides}\\
\\
\frac{17}{12} &= x && \text{Solve for } x
\end{aligned}
\end{equation}
$
Thus, the $x$-intercept is at $\displaystyle \left( \frac{17}{12}, 0 \right) $ or $(1.4167,0)$
Next, solving for $y$-intercept, where $x = 0$
$
\begin{equation}
\begin{aligned}
y &= \sqrt{12(0) - 17}\\
\\
y &= \sqrt{-17}
\end{aligned}
\end{equation}
$
The $y$-intercept does not exist.
Hence, we assume that the appropriate viewing rectangle is $[0,10]$ by $[0,10]$
No comments:
Post a Comment