Differentiate $\displaystyle G(t) = (3t^5 - t^2) \left( t - \frac{5}{t} \right)$
 	
	$
	\begin{equation}
	\begin{aligned}
		G(t) &= \left( 3t^5 \right) (t) - \left( 3t^5 \right) \left( \frac{5}{t} \right) - \left( t^2 \right) (t) + \left( t^2 \right) \left( \frac{5}{t} \right)
        && \text{Use FOIL method}\\
        \\
        G(t) &= 3t^6 - 15t^4 - t^3 + 5t 
        && \text{Multiply variables with same bases by adding their exponents and divide variables with the same base by subtracting the exponents}
	\end{aligned}
	\end{equation}
	$
	
    
    Thus, by taking the derivative, we get
 	
	$
	\begin{equation}
	\begin{aligned}
		G'(t) &= \frac{d}{dt} \left[ 3t^6 - 15t^4 - t^3 + 5t \right]\\
        \\
        &= 18t^5 - 60 t^3 - 3t^2 + 5
	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment