Tuesday, November 15, 2016

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 59

Determine all the points on the graph of the function f(x)=2sinx+sin2x at which the tangent line is horizontal.


f(x)=m=ddx(2sinx+sin2x)Where m=0 because tangent line is horizontalm=2ddx(sinx)+ddx(sinx)2m=2cosx+2sinxddx(sinx)m=2cosx(1+sinx)0=2cosx(1+sinx)


2cosx=0sinx+1=02cosx2=02sinx=1cosx=0

Using the Unit Circle Diagram







x=π2+2πn,x=3π2+2πn (where 2πn refers to the succeeding periods where n is any number)

Solving for y


f(π2)=2sinx+sin2xf(π2)=2sin(π2)+sin2(π2)f(π2)=2+1f(π2)=3f(3π2)=2sinx+sin2(x)f(3π2)=2sin(3π2)+sin2(3π2)f(3π2)=2+1f(3π2)=1


The points on the given function which the tangent is horizontal are (3π2+2πn,1).

No comments:

Post a Comment