Determine all the points on the graph of the function f(x)=2sinx+sin2x at which the tangent line is horizontal.
f′(x)=m=ddx(2sinx+sin2x)Where m=0 because tangent line is horizontalm=2ddx(sinx)+ddx(sinx)2m=2cosx+2sinx⋅ddx(sinx)m=2cosx(1+sinx)0=2cosx(1+sinx)
2cosx=0sinx+1=02cosx2=02sinx=−1cosx=0
Using the Unit Circle Diagram
x=π2+2πn,x=3π2+2πn (where 2πn refers to the succeeding periods where n is any number)
Solving for y
f(π2)=2sinx+sin2xf(π2)=2sin(π2)+sin2(π2)f(π2)=2+1f(π2)=3f(3π2)=2sinx+sin2(x)f(3π2)=2sin(3π2)+sin2(3π2)f(3π2)=−2+1f(3π2)=−1
The points on the given function which the tangent is horizontal are (3π2+2πn,−1).
No comments:
Post a Comment