Find the complete solution of the system {3x−y+2z=−14x−2y+z=−7−x+3y−2z=−1
We transform the system into reduced row-echelon form
[3−12−14−21−7−13−2−1]
13R1
[1−1323−134−21−7−13−2−1]
R2−4R1→R2
[1−1323−130−23−53−173−13−2−1]
R3+R1→R3
[1−1323−130−23−53−173083−43−43]
−32R2
[1−1323−130152172083−43−43]
R3−83R2→R3
[1−1323−13015217200−8−24]
−18R3
[1−1323−1301521720013]
R2−52R3→R2
[1−1323−1301010013]
R1−23R3→R1
[1−130−7301010013]
R1+13R2→R1
[100−201010013]
We now have an equivalent matrix in reduced row-echelon form, and the system of equations is
{x=−2y=1z=3
We can write the solution as the ordered triple (−2,1,3).
No comments:
Post a Comment