a.) Sketch the graph of $f$
b.) Show that the function $f(x) = 1 + \sqrt[4]{x}$ is one to one.
c.) Use part(a) to sketch the graph of $f^{-1}$
d.) Find an equation of $f^{-1}$
a.)
b.) It shows from the graph of $f$ that the function is a one to one function since there is only one corresponding $y$-value for each value of $x$. Also, if you use Horizontal Line Test, the line will intersect the function only once.
c.) To sketch the graph of $f^{-1}$ we reflect the graph of $f$ about the line $y = x$
d.) To find the equation of $f^{-1}$, we set $y = f(x)$
$
\begin{equation}
\begin{aligned}
y &= 1 + \sqrt[4]{x} && \text{Solve for } x \text{, subtract } 1\\
\\
\sqrt[4]{x} &= y - 1 && \text{Raise both sides by 4}\\
\\
x &= (y - 1)^4 && \text{Interchange } x \text{ and } y\\
\\
y &= (x-1)^4
\end{aligned}
\end{equation}
$
Thus, $f^{-1}(x) = (x-1)^4$ for $x > 1$
No comments:
Post a Comment