Find the value generated by rotating $\mathscr{R}_3$ about $OC$
If you rotate $\mathscr{R}_3$ about $OC$, by using horizontal strip, you will form a circular washer with outer radius $\sqrt[3]{y}$ and inner radius $y^2$. Thus, the cross sectional area can be computed by substracting the area of the outer circle to the inner circle. $A_{\text{washer}} = A_{\text{outer}} - A_{\text{inner}} = \pi (\sqrt[3]{y})^2 - \pi (y^2)^2$. Therefore, the value is...
$
\begin{equation}
\begin{aligned}
V &= \int^1_0 \pi \left[ (\sqrt[3]{y})^2 - (y^2)^2 \right] dy\\
\\
V &= \pi \left[ \frac{y^{\frac{5}{3}}}{\frac{5}{3}} - \frac{y^5}{5} \right]^1_0\\
\\
V &= \frac{2\pi}{5} \text{cubic units}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment