a.) Suppose that $f(x) = 4x - \tan x$, $\displaystyle \frac{-\pi}{2} < x < \frac{\pi}{2}$. Find $f'$ and $f''$
$
\begin{equation}
\begin{aligned}
f'(x) &= 4 \frac{d}{dx} (x) - \frac{d}{dx} (\tan x)\\
\\
f'(x) &= 4 - \sec ^2 x\\
\\
f''(x) &= \frac{d}{dx} (4) - \frac{d}{dx} (\sec^2 x)\\
\\
f''(x) &= \frac{d}{dx} (4) - \frac{d}{dx} (\sec x)^2\\
\\
f''(x) &= 0 -2 (\sec x) \frac{d}{dx} (\sec x)\\
\\
f''(x) &= - 2 \sec x \sec x \tan x \\
\\
f''(x) &= -2 \sec^2 x \tan x
\end{aligned}
\end{equation}
$
b.) Graph $f$, $f'$, and $f''$
No comments:
Post a Comment