a.) Suppose that $f(x) = 4x - \tan x$, $\displaystyle \frac{-\pi}{2} < x < \frac{\pi}{2}$. Find $f'$ and $f''$
	
	$
	\begin{equation}
	\begin{aligned}
		f'(x) &= 4 \frac{d}{dx} (x) - \frac{d}{dx} (\tan x)\\
        \\
        f'(x) &= 4 - \sec ^2 x\\
        \\
        f''(x) &= \frac{d}{dx} (4) - \frac{d}{dx} (\sec^2 x)\\
        \\
        f''(x) &= \frac{d}{dx} (4) - \frac{d}{dx} (\sec x)^2\\
        \\
        f''(x) &= 0 -2 (\sec x) \frac{d}{dx} (\sec x)\\
        \\
        f''(x) &= - 2 \sec x \sec x \tan x \\
        \\
        f''(x) &= -2 \sec^2 x \tan x
    \end{aligned}
	\end{equation}
	$
	
    
    b.) Graph $f$, $f'$, and $f''$
No comments:
Post a Comment