Tuesday, October 18, 2016

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 26

a.) Determine the equation of the tangent line to the curve y=secx2cosx at the point (π3,1)

Solving for the derivative of y=secx2cosx


y=ddx(secx)2ddx(cosx)y=secxtanx+2sinx




Let y=mT (slope of the tangent line)


y=mT=sec(π3)tan(π3)+2sin(π3)mT=33


Using Point Slope Form substitute the values of x,y and mT


yy1=m(xx1)y1=33(x=π3)y1=33x3πy=33x3π+1Equation of the tangent line at (π3,1)



b.) Graph the curve and the tangent line in part (a) on the same screen

No comments:

Post a Comment