a.) Determine the equation of the tangent line to the curve y=secx−2cosx at the point (π3,1)
Solving for the derivative of y=secx−2cosx
y′=ddx(secx)−2ddx(cosx)y′=secxtanx+2sinx
Let y′=mT (slope of the tangent line)
y′=mT=sec(π3)tan(π3)+2sin(π3)mT=3√3
Using Point Slope Form substitute the values of x,y and mT
y−y1=m(x−x1)y−1=3√3(x=π3)y−1=3√3x−√3πy=3√3x−√3π+1Equation of the tangent line at (π3,1)
b.) Graph the curve and the tangent line in part (a) on the same screen
No comments:
Post a Comment