Saturday, October 29, 2016

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 69

If g is a differentiable function, find an express for the derivative of each of the following functions.

a.) y=xg(x)b.) y=xg(x)c.) y=g(x)x



a.) y=xg(x)y=xg(x)+g(x)ddx(x)y=xg(x)+g(x)(1)y=xg(x)+g(x)



b.) y=xg(x)y=g(x)ddx(x)g(x)[g(x)]2y=g(x)(1)xg(x)[g(x)]2y=g(x)xg(x)[g(x)]2



c.) y=g(x)xy=xg(x)g(x)ddx(x)x2y=xg(x)g(x)(1)x2y=xg(x)g(x)x2

No comments:

Post a Comment