If $g$ is a differentiable function, find an express for the derivative of each of the following functions.
	
	$
	\begin{equation}
	\begin{aligned}
		\text{a.) } y &= xg(x) && \text{b.) } y = \frac{x}{g(x)}\\
		\text{c.) } y &= \frac{g(x)}{x}
	\end{aligned}
	\end{equation}
	$
	
	
	
	$
	\begin{equation}
	\begin{aligned}
		\text{a.) } y &= xg(x)\\
					\\
					y'&= x g'(x) + g(x) \frac{d}{dx} (x)\\
					\\
					y'&= x g'(x) + g(x) (1)\\
					\\
					y'&= x g'(x) + g(x)
	\end{aligned}
	\end{equation}
	$
	
	
	
	$
	\begin{equation}
	\begin{aligned}
		\text{b.) } y &= \frac{x}{g(x)}\\
					\\
					y'&= \frac{g(x) \frac{d}{dx}(x) - g'(x)}{[g(x)]^2}\\
					\\
					y'&= \frac{g(x)(1) - x g'(x)}{[g(x)]^2}\\
					\\
					y'&= \frac{g(x) - xg'(x)}{[g(x)]^2}
	\end{aligned}
	\end{equation}
	$
	
	
	
	$
	\begin{equation}
	\begin{aligned}
		\text{c.) } y &= \frac{g(x)}{x}\\
					\\
					y'&= \frac{xg'(x) - g(x) \frac{d}{dx}(x)}{x^2}\\
					\\
					y'&= \frac{xg'(x) - g(x) (1) }{x^2}\\
					\\
					y'&= \frac{xg'(x) - g(x)}{x^2}
	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment