Monday, October 24, 2016

College Algebra, Chapter 9, 9.2, Section 9.2, Problem 56

Determine the product of the numbers 10110,10210,10310,10410,.....,101910

By Laws of Exponent, we have

10110+210+310,410+.....+1910

To solve for the sum, we use both formulas of partial sums of the arithmetic sequence; solve for n, where d=210110=110


n2[2a+(n1)d]=n(a+an2)2a+(n1)d=a+anMultiply both sides by 2n(n1)d=anaCombine like termsn1=anadDivide by dn=anad+1Add 1n=1910110110+1n=18\cancel101\cancel10+1n=19


Now we solve the partial sum,


S19=19(110+19102)S19=19(1)S19=19


So the product is

10110+210+310+410+.....+1910=1019

No comments:

Post a Comment