Determine the critical numbers of the function h(p)=p−1p2+4
h′(p)=ddp(p−1p2+4)h′(p)=(p2+4)ddp(p−1)−(p−1)ddp(p2+4)(p2+4)2h′(p)=(p2+4)(1)−(p−1)(2p)(p2+4)2h′(p)=p2+4−(2p2−2p)(p2+4)2h′(p)=p2+4−2p2+2p(p2+4)2h′(p)=−p2+2p+4(p2+4)2
Solving for critical numbers
h′(p)=00=−p2+2p+4(p2+4)2(p2+4)2[0=−p2+2p+4\cancel(p2+4)2]\cancel(p2+4)20=−p2+2p+4 or p2−2p−4=0
Using Quadratic Equation
p=−b±√b2−4ac2ap=−(−2)±√(−2)2−(4)(1)(−4)2(1)p=2±√4+162p=2±√202p=2±√(4)(5)2p=2±2√52p=\cancel2(1±√5)\cancel2p=1±√5
Therefore, the critical numbers are p=1+√5 and p=1−√5.
No comments:
Post a Comment