Saturday, August 20, 2016

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 36

Determine the critical numbers of the function h(p)=p1p2+4


h(p)=ddp(p1p2+4)h(p)=(p2+4)ddp(p1)(p1)ddp(p2+4)(p2+4)2h(p)=(p2+4)(1)(p1)(2p)(p2+4)2h(p)=p2+4(2p22p)(p2+4)2h(p)=p2+42p2+2p(p2+4)2h(p)=p2+2p+4(p2+4)2


Solving for critical numbers


h(p)=00=p2+2p+4(p2+4)2(p2+4)2[0=p2+2p+4\cancel(p2+4)2]\cancel(p2+4)20=p2+2p+4 or p22p4=0


Using Quadratic Equation


p=b±b24ac2ap=(2)±(2)2(4)(1)(4)2(1)p=2±4+162p=2±202p=2±(4)(5)2p=2±252p=\cancel2(1±5)\cancel2p=1±5


Therefore, the critical numbers are p=1+5 and p=15.

No comments:

Post a Comment