Find an expression of the function in the form $f \circ g \circ h$
Given: $H(x) = \sec ^4 (\sqrt{x}) $
The function $H(x) = \sec ^4 (\sqrt{x})$ states that we first take the square root then we take the secant of the result and raise it to $4^{th}$ power. So we have,
$\fbox{$ \displaystyle h(x) = \sqrt{x} \qquad g(x) = \sec x \qquad f(x) =x^4$}$
Upon checking:
$
\begin{equation}
\begin{aligned}
f \circ g \circ h = & f(g(h(x)))\\
f(g(\sqrt{x})) = & \sec x\\
f(\sec \sqrt{x}) = & x^4\\
f \circ g \circ h = & \sec^4 \sqrt{x}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment