Find the solution of the system to the reduced row-echelon form of augmented matrix of a system or linear equations.
a.) $\left[ \begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array} \right]$
$
\begin{equation}
\begin{aligned}
x =& \underline{2}
\\
y =& \underline{1}
\\
z =& 3
\end{aligned}
\end{equation}
$
b.) $\left[ \begin{array}{cccc}
1 & 0 & 1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array} \right]$
$
\begin{equation}
\begin{aligned}
x =& \underline{2 - t}
\\
y =& \underline{1 - t}
\\
z =& \underline{t}
\end{aligned}
\end{equation}
$
c.) $\left[ \begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 3
\end{array} \right]$
The system has no solution.
No comments:
Post a Comment