If f(π3)=4 and f′(π3)=−2, and let g(x)=f(x)sinx and h(x)=cosxf(x).
Find (a) g′(π3) and (b) h′(π3).
a. ) g(x)=f(x)sinx
g′(x)=f(x)ddx(sinx)+(sinx)ddx(f(x))Using Product Ruleg′(x)=f(x)cosx+f′(x)sinxSubstitute the given valueg′(π3)=f(π3)cos(π3)+f′(π3)sin(π3)Simplify the equationg′(π3)=−(4)(12)+(−2)(√32)Simplify the equationg′(π3)=2−√3
b.) h(x)=cosxf(x)
h′(x)=f(x)ddx(cosx)−[cosxddxf(x)](f(x))2Apply Quotient Ruleh′(x)=f(x)(−sinx)−f′(x)cosx(f(x))2Substitute given valueh′(x)=−f(π3)sin(π3)−f′(π3)cos(π3)(f(π3))2Simplify the equationh′(π3)=(4)(√32)−(−2)(12)(4)2Simplify the equationh′(π3)=−2√3+116Simplify the equationh′(π3)=116−√38
No comments:
Post a Comment