Friday, June 10, 2016

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 32

If f(π3)=4 and f(π3)=2, and let g(x)=f(x)sinx and h(x)=cosxf(x).

Find (a) g(π3) and (b) h(π3).

a. ) g(x)=f(x)sinx


g(x)=f(x)ddx(sinx)+(sinx)ddx(f(x))Using Product Ruleg(x)=f(x)cosx+f(x)sinxSubstitute the given valueg(π3)=f(π3)cos(π3)+f(π3)sin(π3)Simplify the equationg(π3)=(4)(12)+(2)(32)Simplify the equationg(π3)=23



b.) h(x)=cosxf(x)



h(x)=f(x)ddx(cosx)[cosxddxf(x)](f(x))2Apply Quotient Ruleh(x)=f(x)(sinx)f(x)cosx(f(x))2Substitute given valueh(x)=f(π3)sin(π3)f(π3)cos(π3)(f(π3))2Simplify the equationh(π3)=(4)(32)(2)(12)(4)2Simplify the equationh(π3)=23+116Simplify the equationh(π3)=11638

No comments:

Post a Comment