Solve $5k - (5k - [2k - (4k - 8k)]) + 11k - (9k - 12k)$
Since $4k$ and $-8k$ are liek terms, add $-8k$ to $4k$ to get $-4k$.
$5k−(5k−(2k−(−4k)))+11k−(9k−12k)$
Multiply $−1$ by each term inside the parentheses.
$5k−(5k−(2k+4k))+11k−(9k−12k)$
Since $2k$ and $4k$ are like terms, add $4k $ to $2k$ to get $6k$.
$5k−(5k−(6k))+11k−(9k−12k)$
Multiply $−1$ by each term inside the parentheses.
$5k−(5k−6k)+11k−(9k−12k)$
Since $5k$ and $−6k$ are like terms, add $−6k$ to $5k$ to get $−k$.
$5k−(−k)+11k−(9k−12k)$
Multiply $−1$ by each term inside the parentheses.
$5k+k+11k−(9k−12k)$
Since $9k$ and $ −12k$ are like terms, add $−12k$ to $9k$ to get $−3k$.
$5k+k+11k−(−3k)$
Multiply $−1$ by each term inside the parentheses.
$5k+k+11k+3k$
Combine all similar terms in the polynomial $5k+k+11k+3k$.
$20k$
No comments:
Post a Comment