Wednesday, June 22, 2016

College Algebra, Chapter 4, 4.1, Section 4.1, Problem 12

A quadratic function f(x)=x2+10x.

a.) Find the quadratic function in standard form.


f(x)=x2+10xf(x)=1(x210x)Factor out 1 from each termf(x)=1(x210x+25)(1)(25)Complete the square: add 25 inside parentheses, subtract (1)(25) outsidef(x)=(x5)2+25Factor and simplify


The standard form is f(x)=(x5)2+25.

b.) Find its vertex and its x and y-intercepts.

By using f(x)=a(xh)2+k with vertex at (h,k).

The vertex of the function f(x)=(x5)2+25 is at (5,25).


Solving for x-interceptsSolving for y-interceptWe set f(x)=0, thenWe set x=0, then0=(x5)2+25Add (x5)2y=(05)2+25Substitute x=0(x5)2=25Take the square rooty=(5)2+25Simplifyx5=±5Add 5y=25+25Simplifyx=±5+5Simplifyy=0x=0 and x=10


c.) Draw its graph.

No comments:

Post a Comment