Find all real solutions of the equation $\displaystyle \sqrt{11 - x^2} - \frac{2}{\sqrt{11 - x^2}} = 1$
$
\begin{equation}
\begin{aligned}
\sqrt{11 - x^2} - \frac{2}{\sqrt{11 - x^2}} =& 1
&& \text{Given}
\\
\\
11 - x^2 - 2 =& \sqrt{11 - x^2}
&& \text{Multiply both sides by } \sqrt{11 - x^2}
\\
\\
(9 -x^2)^2 =& (\sqrt{11 - x^2})^2
&& \text{Square both sides}
\\
\\
81 - 18x^2 + x^4 =& 11 -x^2
&& \text{Combine like terms}
\\
\\
x^4 - 17x^2 + 70 =& 0
&& \text{Let } w = x^2
\\
\\
w^2 - 17w + 70 =& 0
&& \text{Factor}
\\
\\
(w - 7)(w - 10) =& 0
&& \text{Zero Product Property}
\\
\\
w - 7 =& 0 \text{ and } w - 10 = 0
&& \text{Solve for } w
\\
\\
w =& 7 \text{ and } w = 10
&& \text{Substitute } w = x^2
\\
\\
x^2 =& 7 \text{ and } x^2 = 10
&& \text{Solve for } x
\\
\\
x =& \pm \sqrt{7} \text{ and } x = \pm \sqrt{10}
&&
\\
\\
x =& \pm \sqrt{7}
&& \text{The solutions that satisfy the equation}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment