Friday, May 13, 2016

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 48

Given the function
g(x)={x if x<13 if x=12x2 if 1<x2x3 if x>2

a.) Find each of the following limits if it exists

(i)limx1g(x)(ii)limx1g(x)(iii)g(1)(iv)limx2g(x)(v)limx2+g(x)(vi)limx2g(x)


b.) Sketch the graph of g


Answers:
a.)


(i)limx1g(x)=limx1x=1(ii)limx1g(x)We evaluate first the right limit of the function to see whether the limx1g(x) existxlimx1+g(x)=limx1+(2x2)=2(1)2=1xThe left and right hand limits are equal. Therefore, limx1g(x) exist and is equal to 1xlimx1g(x)=1(iii)g(1)g(1)=3(iv)limx2g(x)=limx2(2x2)=2(2)2=2(v)limx2+g(x)=limx2(x3)=23=1(vi)limx2g(x)Does not exist because the left and right hand limits are different


b.) Sketch the graph of g

No comments:

Post a Comment