Given the function
g(x)={x if x<13 if x=12−x2 if 1<x≤2x−3 if x>2
a.) Find each of the following limits if it exists
(i)limx→1−g(x)(ii)limx→1g(x)(iii)g(1)(iv)limx→2−g(x)(v)limx→2+g(x)(vi)limx→2g(x)
b.) Sketch the graph of g
Answers:
a.)
(i)limx→1−g(x)=limx→1−x=1(ii)limx→1g(x)We evaluate first the right limit of the function to see whether the limx→1g(x) existxlimx→1+g(x)=limx→1+(2−x2)=2−(1)2=1xThe left and right hand limits are equal. Therefore, limx→1g(x) exist and is equal to 1xlimx→1g(x)=1(iii)g(1)g(1)=3(iv)limx→2−g(x)=limx→2(2−x2)=2−(2)2=−2(v)limx→2+g(x)=limx→2(x−3)=2−3=−1(vi)limx→2g(x)Does not exist because the left and right hand limits are different
b.) Sketch the graph of g
No comments:
Post a Comment