Thursday, May 26, 2016

int (4x-2/(2x+3)^2) dx Find the indefinite integral

int (4x - 2/(2x+3)^2)dx
To solve, express it as difference of two integrals.
= int 4x dx - int 2/(2x+3)^2dx
Then, apply negative exponent rule a^(-m)=1/a^m .
= int 4xdx - int 2(2x+3)^(-2)dx
For the second integral, apply the u-substitution method. 

u = 2x + 3
du = 2dx

Expressing the second integral in terms of u variable, it becomes:
=int 4xdx - int (2x+3)^(-2) * 2dx
=int 4xdx - int u^(-2) du
For both integrals, apply the formula int x^ndx= x^(n+1)/(n+1)+C .
= (4x^2)/2 - u^(-1)/(-1) + C
=2x^2 + u^(-1) + C
= 2x^2 + 1/u + C
And, substitute back u = 2x + 3
=2x^2+1/(2x+3)+C
 
Therefore, int (4x - 2/(2x+3)^2)dx=2x^2+1/(2x+3)+C .

No comments:

Post a Comment