Suppose a print shop makes bumper stickers for election campaigns.
If $x$ stickers...
Use the fact that
Profit = Revenue $-$ Cost
To express $P(x)$, the profit on an order of $x$ stickers, as a difference of two functions of $x$.
$
\begin{equation}
\begin{aligned}
\text{Revenue } &= x (0.15 - 0.000002x)\\
\\
\text{Cost } &= x\left(0.095 x - 0.0000005x ^2\right)\\
\end{aligned}
\end{equation}
$
Where $x$ is the number of stickers.
Then
$
\begin{equation}
\begin{aligned}
\text{Profit } &= x (0.15 - 0.000002x) - x \left(0.095 x - 0.0000005x^2\right)\\
\\
\text{Profit } &= x \left[ 0.15 - 0.000002x - \left(0.095x - 0.0000005x^2\right) \right]\\
\\
\text{Profit } &= x \left( 0.15 - 0.000002x - 0.095 x + 0.000000 5x^2 \right)\\
\\
\text{Profit } &= x \left( 0.15 - 0.095002x + 0.0000005x^2 \right)
\end{aligned}
\end{equation}
$
No comments:
Post a Comment