Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 24
Differentiate f(x)=1+lnx1−lnx
if f(x)=1+lnx1−lnx, then by using Quotient Rulef′(x)=(1−lnx)⋅ddx(1+lnx)−(1+lnx)⋅ddx(1−lnx)(1−lnx)2f′(x)=(1−lnx)(1x)−(1+lnx)(−1x)(1−lnx)2f′(x)=1x(1−lnx+1+lnx)(1−lnx)2f′(x)=2x(1−lnx)2
No comments:
Post a Comment