Friday, April 29, 2016

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 24

Differentiate f(x)=1+lnx1lnx


if f(x)=1+lnx1lnx, then by using Quotient Rulef(x)=(1lnx)ddx(1+lnx)(1+lnx)ddx(1lnx)(1lnx)2f(x)=(1lnx)(1x)(1+lnx)(1x)(1lnx)2f(x)=1x(1lnx+1+lnx)(1lnx)2f(x)=2x(1lnx)2

No comments:

Post a Comment