Saturday, April 30, 2016

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 10

Determine the general indefinite integral v(v2+2)2dv

v(v2+2)2dv=v(v4+4v2+4)dvv(v2+2)2dv=(v5+4v3+4v)dvv(v2+2)2dv=v5dv+4v3dv+4vdvv(v2+2)2dv=v5+15+1+4(v3+13+1)+4(v1+11+1)+Cv(v2+2)2dv=v66+\cancel4(v4\cancel4)+4(v22)+Cv(v2+2)2dv=v66+v4+2v2+C

No comments:

Post a Comment