Friday, April 22, 2016

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 54

Determine the points on the ellipse x2+2y2=1 where the tangent line has slope 1.
Solving fro x, where slope(m)=1=y
ddx(x2)+2ddx(y2)=ddx(1)

2x+4ydydx=05yy=2x\cancel4yy\cancel4y=2x4yy=x2y1=x2y2y=x\cancel2y\cancel2=x2y=x2

Using the given equation


x2+2y2=1x2+2(x2)2=1x2+2(x4)=1x2+x22=12x2+x22=13x22=1\cancel2\cancel3[\cancel3\cancel2x2=\cancel3\cancel21]23x2=23x2=±23x2=±23


Solving for y, using the given equation
@ x=±23

(23)2+2y2=123+2y2=12y2=1232y2=3232y2=13\cancel2y2\cancel2=132y2=16y2=±16y=±16


The points on the ellipse x2+y2=1 where the slope is 1 are (±23,±16)

No comments:

Post a Comment