Determine the points on the ellipse x2+2y2=1 where the tangent line has slope 1.
Solving fro x, where slope(m)=1=y′
ddx(x2)+2ddx(y2)=ddx(1)
2x+4ydydx=05yy′=−2x\cancel4yy′\cancel4y=−2x4yy′=−x2y1=−x2y2y=−x\cancel2y\cancel2=−x2y=−x2
Using the given equation
x2+2y2=1x2+2(−x2)2=1x2+2(−x4)=1x2+x22=12x2+x22=13x22=1\cancel2\cancel3[\cancel3\cancel2x2=\cancel3\cancel21]23x2=23√x2=±√23x2=±√23
Solving for y, using the given equation
@ x=±23
(√23)2+2y2=123+2y2=12y2=1−232y2=3−232y2=13\cancel2y2\cancel2=132y2=16√y2=±√16y=±√16
The points on the ellipse x2+y2=1 where the slope is 1 are (±√23,±√16)
No comments:
Post a Comment