Find $y'$ of $\displaystyle y = \left( x + \frac{1}{x^2} \right)^{\sqrt{7}}$
$
\begin{equation}
\begin{aligned}
y' &= \frac{d}{dx} \left( x + \frac{1}{x^2} \right)^{\sqrt{7}}\\
\\
y' &= \sqrt{7} \left( x + \frac{1}{x^2} \right)^{\sqrt{7}-1} \frac{d}{dx} \left( x + \frac{1}{x^2} \right)\\
\\
y' &= \sqrt{7} \left( x + \frac{1}{x^2} \right)^{\sqrt{7}-1} \left[ 1 + \frac{x^2 \frac{d}{dx}(1) - (1) \frac{d}{dx}(x^2) }{(x^2)^2} \right]\\
\\
y' &= \sqrt{7} \left( x + \frac{1}{x^2} \right)^{\sqrt{7}-1} \left[ 1 + \frac{(x^2)(0)-(1)(2x)}{x^4} \right]\\
\\
y' &= \sqrt{7} \left( x + \frac{1}{x^2} \right)^{\sqrt{7}-1} \left[ 1 + \left( \frac{-2x}{x^4} \right) \right]\\
\\
y' &= \sqrt{7} \left( x + \frac{1}{x^2} \right)^{\sqrt{7}-1} \left( 1 - \frac{2}{x^3} \right)
\end{aligned}
\end{equation}
$
No comments:
Post a Comment