Determine the derivative of the function y=(ax+√x2+b2)−2
y′=ddx(ax+√x2+b2)−2(where a and b are constant)y′=−2(ax+√x2+b2)−3ddx[ax+(x2+b2)12]y′=−2(ax+√x2+b2)−3[a+12(x2+b2)−12ddx(x2+b2)]y′=−2(ax+√x2+b2)−3[a+1\cancel2(x2+b2)−12(\cancel2x)]y′=[−2(ax+√x2+b2)3][a+x(x2+b2)12]
No comments:
Post a Comment