Determine a function whose graph is a parabola with vertex $(3, 4)$ and that passes through the point $(1, -8)$.
Recall that the general equation of a parabola is
$f(x) = a(x - h)^2 + k$, with vertex $(h,k)$
where $x = 1, f(x) = -8, h = 3$ and $k = 4$.
Solving for $a$, we have
$
\begin{equation}
\begin{aligned}
-8 =& a(1 - 3)^2 + 4
&& \text{Substitute the given values}
\\
\\
-8 =& 4a + 4
&& \text{Evaluate the parentheses}
\\
\\
-8 - 4 =& 4a
&& \text{Subtract } 4
\\
\\
-12 =& 4a
&& \text{Divide by } 4
\\
\\
a =& -3
&& \text{Answer}
\end{aligned}
\end{equation}
$
Thus, the function is
$f(x) = -3 (x - 3)^2 + 4$
No comments:
Post a Comment