Evaluate ∫21(mx)2x3dx by using Integration by parts.
If we let u=mx, then eu=x and du=1dxdx we must also make the upper and lower limits in terms of u, so...
so ∫21(lnx)2x3dx=∫ln(2)ln(1)u2(eu)3xdu=∫ln20u2(eu)3(eu)du=∫ln20u2e2udu
To evaluate ∫ln20u2e2udu we must use integration by parts. Then,
if we let u1=u2 and dv1=e−2udu
du1=2udu and v1=∫e−2udu=−12e−2u
So,
∫ln20u2e2udu=u1v1−∫v1du1=−u22e−2u−∫−12e−2u(2udu)=−u22e−2u+∫ue−2udu
To evaluate ∫ue−2udu, we must use integration by parts once more, so...
If we let u2=i and dv2e−2udu, then
du2=du and v2=∫e−2udu=−12e−2u
So,
∫ue−2udu=u2v2−∫v2du2=−u2e−2u−∫(−12e−2u)(du)=−u2e−2u+12∫e−2udu=−u2e−2u+12(−12e−2u)=−u2e−2u−14e−2u
Going back to the first equation,
∫ln20u2e2u=−u22e−2u+[−u2e−2u−14e−2u]=−u22e−2u−u2e−2u−14e−2u=−e−2u2(−u2−u−12)
Evaluating from 0 to ln2
=[e−2ln22(−(ln2)2−ln2−12)]−[e−2(0)2(02−0−12)]=316−18[(ln2)2+ln2]
No comments:
Post a Comment