Thursday, March 31, 2016

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 28

Evaluate 21(mx)2x3dx by using Integration by parts.
If we let u=mx, then eu=x and du=1dxdx we must also make the upper and lower limits in terms of u, so...

so 21(lnx)2x3dx=ln(2)ln(1)u2(eu)3xdu=ln20u2(eu)3(eu)du=ln20u2e2udu


To evaluate ln20u2e2udu we must use integration by parts. Then,
if we let u1=u2 and dv1=e2udu
du1=2udu and v1=e2udu=12e2u

So,

ln20u2e2udu=u1v1v1du1=u22e2u12e2u(2udu)=u22e2u+ue2udu

To evaluate ue2udu, we must use integration by parts once more, so...
If we let u2=i and dv2e2udu, then
du2=du and v2=e2udu=12e2u

So,

ue2udu=u2v2v2du2=u2e2u(12e2u)(du)=u2e2u+12e2udu=u2e2u+12(12e2u)=u2e2u14e2u


Going back to the first equation,

ln20u2e2u=u22e2u+[u2e2u14e2u]=u22e2uu2e2u14e2u=e2u2(u2u12)


Evaluating from 0 to ln2

=[e2ln22((ln2)2ln212)][e2(0)2(02012)]=31618[(ln2)2+ln2]

No comments:

Post a Comment