Solve the system of equations $
\begin{equation}
\begin{aligned}
5x - 2z =& 8 \\
4y + 3z =& -9 \\
\frac{1}{2}x + \frac{2}{3}y =& -1
\end{aligned}
\end{equation}
$.
$
\begin{equation}
\begin{aligned}
15x \phantom{+8y} - 6z =& 24
&& 3 \times \text{ Equation 1}
\\
\phantom{15x + } 8y + 6z =& -18
&& 2 \times \text{ Equation 2}
\\
\hline
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
15x + 8y \phantom{+ 6z} =& 6
&& \text{Add}
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
15x + 8y =& 6
&& \text{Equation 4}
\\
\frac{1}{2}x + \frac{2}{3}y =& -1
&& \text{Equation 3}
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
15x + 8y =& 6
&& \text{Equation 4}
\\
-6x - 8y =& 12
&& 12 \times \text{ Equation 3}
\\
\hline
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
9x \phantom{-8y} =& 18
&& \text{Add}
\\
x =& 2
&& \text{Divide each side by $9$}
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
5(2) - 2z =& 8
&& \text{Substitute } x = 2 \text{ in Equation 1}
\\
10 - 2z =& 8
&& \text{Multiply}
\\
-2z =& -2
&& \text{Subtract each side by $10$}
\\
z =& 1
&& \text{Divide each side by $-2$}
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
4y + 3(1) =& -9
&& \text{Substitute } z = 1 \text{ in Equation 2}
\\
4y + 3 =& -9
&& \text{Multiply}
\\
4y =& -12
&& \text{Subtract each side by $3$}
\\
y =& -3
&& \text{Divide each side by $-3$}
\end{aligned}
\end{equation}
$
The ordered triple is $\displaystyle \left( 2, -3, 1 \right)$.
No comments:
Post a Comment