Determine the derivative of the function f(x)=∫sinx11−t21+t4dt using the properties of integral.
ddx∫sinx11−t21+t4dt=ddx(∫u11−t21+t4dt)
g′(x)=ddu(∫u11−t21+t4dt)g′(x)=ddu(∫u11−t21+t4dt)dudxg′(x)=1−u21+u4dudxg′(x)=1(sinx)21+(sinx)4⋅cosxg′(x)=(1−sin2x)(cosx)1+sin4x⟸ (Apply Pythagorean Identity sin2θ+cos2θ=1)g′(x)=(cos2x)(cosx)1+sin4xg′(x)=cos3x1+sin4x
No comments:
Post a Comment