Determine $\displaystyle \lim_{x \to \infty} \frac{3x + 5}{x - 4}$
$
\begin{equation}
\begin{aligned}
\lim_{x \to \infty} \frac{3x + 5}{x - 4} \cdot \frac{\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x}} =& \frac{\displaystyle \frac{3 \cancel{x}}{\cancel{x}} + \frac{5}{x} }{\displaystyle \frac{\cancel{x}}{\cancel{x}} - \frac{4}{x}}
\\
\\
=& \lim_{x \to \infty} \frac{\displaystyle 3 + \frac{5}{x}}{\displaystyle 1 - \frac{4}{x}}
\\
\\
=& \frac{\displaystyle \lim_{x \to \infty} \left( 3 + \frac{5}{x} \right) }{\displaystyle \left( 1 - \frac{4}{x} \right) }
\\
\\
=& \frac{3 + \displaystyle \lim_{x \to \infty} \frac{5}{x}}{\displaystyle 1 - \displaystyle \lim_{x \to \infty} \frac{4}{x}}
\\
\\
=& \frac{3 + 0}{1 - 0}
\\
\\
=& \frac{3}{1}
\\
\\
=& 3
\end{aligned}
\end{equation}
$
No comments:
Post a Comment